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Abstract

In this paper, we present a continuous time autoregressive moving average (CARMA) model
with stochastic speed of mean reversion. This model allows the mean reversion rates to be-
have stochastically and governed by an Ornstein-Uhlenbeck process. We provide closed-form
solution to the CARMAwith stochastic speed of mean reversion and formulate the price of tem-
perature insurance using spot-forward relationship framework. We demonstrate the insurance
pricing based on the cumulative average temperatures (CAT) index by simulating the tempera-
ture variations. We found that our proposed model may explain the temperature evolution well
and the price of CAT-based index insurance looks reasonable.

Keywords: stochastic process; continuous autoregressive moving average processes; mean re-
version; temperature model; temperature insurance.
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1 Introduction

Continuous time autoregressive moving average (CARMA) is a general class of stationary
processes which has been widely used in many fields including physics and engineering for many
years. In finance, the process is popularly employed in modelling the spot price dynamics of
many financial assets. A work by Andresen et. al [1] has used CARMA processes to explain the
evolution of the short and formed interest rates. Garcia et. al [11] have theoretically studied the
properties and estimation of CARMA processes with the application in energy market. In energy
relatedmarkets for example temperature, the CARMAprocesses have been empirically studied by
Benth and Sǎltyte [6] for the purpose of energy derivatives pricing. These studiesmotivate the use
of CARMAmodel in weather index insurance by Taib and Darus [14]. In freight market, Benth et
al. [5] has proposed theCARMAprocess tomodel the spot freight rates. A numerical investigation
of the CARMA has been done by Engan [10] in pricing forward and options contracts.

Lévy driven CARMA processes is defined as Y (t) = b′X(t), whereX(t) be the solution of the
stochastic differential equation

dX(t) = AX(t)dt+ epσdL(t),

where A is a p× pmatrix containing pmean reversion parameters. The mean reversion is related
to the stationary property of the process where the process is assumed to revert back to their long
term average. By setting p = 1, we have A = α. This lead us to the Ornstein-Uhlenbeck (OU)
process as a subclass of CARMA defined by (see Benth and Sǎltyte [6])

dX(t) = −αX(t)dt+ σdL(t). (1)

This process has been applied in finance particularly in option pricing (see Ibrahim [13]) and also
in insurance (see Dufresne [9]).

The speed of mean reversion parameters are normally considered as constant. However, we
may from the previousworks of Barlow et al. [2] see that the constancy of themean reversion rate is
problematic where their study found the uncertainty in the estimation of the speed of mean rever-
sion. In addition, the study by Zapranis and Alexandridis [15] suggests that the mean reversion
rate is not constant and change over time. Furthermore, Benth and Khedher [4] have proposed
the stochastic process which allow the speed of mean reversion to be stochastic. The findings later
have been applied in the calibration of futures contracts on temperatures index. Following Benth
and Khedher [4], we consider the stochastic speed of mean reversion in this paper, by allowing
matrix A be A(t), and the element αi(t) in the matrix is the stochastic mean reversion rate. To the
best of our knowledge, this is the first study considering the stochastic speed of mean reversion
for CARMA processes.

One of the issues when allowing mean reversion parameter of the CARMA be stochastic is
the stationary property of the process still hold. Stationarity solution to the stochastic differential
equation is required to ensure the mean and variance do not change over time. Previous study
in determining the necessary and sufficient conditions for the existence of the strictly stationary
solutions of Lévy-driven CARMA process was done by Brockwell and Lindner [8]. Similar in-
vestigation has also been done by Gushchin and Kuchler [12]. Our study found that stationary
property still hold for the CARMA processes with stochastic speed of mean reversion.
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The paper is organised as follows: Section 2 discusses the main part of the study, that is the
introduction of the CARMA processes with the stochastic speed of mean reversion. In Section 3,
we provide empirical analysis of our temperature data. Section 4 is devoted to the simulation pro-
cedures for CARMA processes with stochastic speed of mean reversion for temperatures. Finally,
Section 5 concludes our paper.

2 Lévy-Driven CARMA Process with Stochastic Speed of Mean Reversion

Let L(t) be a Lévy process defined on a complete filtered probability space (Ω,F , {Ft}t≥0, P ).
For 0 ≤ q < p, we denote b as a vector which contains elements bj , j = 0, . . . , p − 1 with bj = 0
and bq = 1 for q < j < p. The CARMA(p, q) process is defined as

Y (t) = b′X(t), (2)

whereX(t) ∈ Rp satisfies the following stochastic differential equation

dX(t) = AX(t) dt+ epσdL(t). (3)

Here, parameter σ is a positive constant and ek(k = 1, . . . , p) is the kth unit vector in Rp. The p× p
matrix A contains parameter αi(i = 1, . . . , p) which is given by,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αp −αp−1 −αp−2 · · · −α1

 . (4)

Note that αi is referred to the speed of mean reversion. For p = 1, we have A = α1 = α and (3)
can be re-expressed as

dX(t) = −αX(t)dt+ σdL(t). (5)

Equation (5) is popularly known as the OU process. The solution of (3) for s ≥ t yielding

X(s) = eA(s−t)X(t) +

∫ s

t

eA(s−u)epσdL(u). (6)

Hence, the CARMA process (2) is given as

Y (t) = b′eA(s−t)X(s) +

∫ t

s

b′eA(t−u)epσdL(u). (7)

Equations (2) and (3) can also be represented as (see Brockwell [7])

a(D)Y (t) = b(D)DL(t), (8)
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where D is the differentiation with respect to t, while a(·) and b(·) are the polynomials

a(z) = zp + α1z
p−1 + · · ·+ αp,

b(z) = b0 + b1z + · · ·+ bpz
p.

(9)

According to Brockwell [7], the CARMA process is stationary if and only if the real parts of the
eigenvalues of A are negative, that is Re(λi) < 0 for i = 1, . . . , p, then the roots of the polynomials
(9) are distinct.

Further, we redefine X(t) to be the stochastic process with stochastic speed of mean reversion
given as

dX(t) = A(t)X(t) dt+ epσdL(t). (10)

Note that A is now changed to A(t) to represent the matrix which containing the stochastic mean
reversion rates. The following proposition is devoted to the explicit solution of (10). Remark that
A(t) is measurable and adapted process satisfying the integrability conditions.

Proposition 2.1. Suppose that A(t) is integrable on [0, T ] for a given T <∞, then

E

[
exp

(∫ T

0

A(u)du

)]
<∞.

For t ≤ T , the Ft-adapted process

X(t) = exp

(∫ t

0

A(u)du

)
X(0) + exp

∫ t

0

A(u)du

∫ t

0

epσexp

(
−
∫ s

0

A(u)du

)
dL(s),

is the solution of (10).

Proof. By applying Itô formula, we get

d

(
X(t)exp

(∫ t

0

A(u)du

))
=−A(t)X(t)exp

(
−
∫ t

0

A(u)du

)
dt+ exp

(
−
∫ t

0

A(u)du

)
dL(t)

=epσ exp

(
−
∫ t

0

A(u)du

)
dL(t).

Thus, we have

d

(
X(t)exp

(
−
∫ t

0

A(u)du

))
= epσexp

(
−
∫ t

0

A(u)du

)
dL(t)

X(t)exp

(
−
∫ t

0

A(u)du

)
= X(0) +

∫ t

0

ep σ exp

(
−
∫ s

0

A(u)du

)
dL(s).

The proposition follows.

Hence, the new CARMA process is given as

Y (t) = b′exp

(∫ t

0

A(u)du

)
X(0) + exp

(∫ t

0

A(u)du

)∫ t

0

b′ep σ exp

(
−
∫ s

0

A(u)du

)
dL(s). (11)
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Here, A(t) is the p× p-matrix given by

A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αp(t) −αp−1(t) −αp−2(t) · · · −α1(t)

 , (12)

where αk(t) for k = 1, . . . , p are the stochastic speed of mean reversions. Following Benth and
Khedher [4], we define αk(t) as stationary Lévy processes given by

dαk(t) = β(µ− αk(t))dt+ ηdZ(t), (13)

where β > 0 and η > 0 are two constants representing the mean reversion rate and volatility of
speed of mean reversion respectively. The value µ is referred to a long term mean level. Such
process is driven by subordinator Z(t), that is the Lêvy process with increasing path. The next
proposition derive the explicit solution of (13).

Proposition 2.2. For s ≤ t, the Ft-adapted process

αk(t) = µ (1− exp (−βt)) + exp (−βt)αk(s) + η

∫ t

s

exp (−β) (t− u) dZ(u),

is the solution of (13).

Proof. Let µ be a long-term mean, by changing of variable we have

U(t) = αk(t)− µ.

Express U(t) in form of
dU(t) = dαk(t) = −βU(t)dt+ ηdZ(t). (14)

Equation 14 has drift toward zero at an exponential −β, and by changing the variables, we have

U(t) = exp(−βt)R(t)⇔ R(t) = exp(βt)U(t).

Applying the Itô formula, we obtain

d (exp(βt)U(t)) = β exp(βt)U(t)dt+ exp(βt)dU(t)

= η exp(βt)dZ(t).
(15)

The solution for R(t) is immediately obtained by Itô-integrating for t ≥ 0

R(t) = R(s) + η

∫ t

s

exp (βu) dZ(u),

and by reverting the change, we get

U(t) = exp(−βt)R(t)

= exp(−βt)U(t) + ηexp(−βt)
∫ t

s

exp(β(t− u))dZ(u),
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and finally we obtain

αk(t) = U(t) + µ

= µ (1− exp (−βt)) + exp (−βt)αk(s) + η

∫ t

s

exp (−β) (t− u) dZ(u).
(16)

If β > 0, then limt→∞
∫ t
s
e−β udZ(u) exists a.s finite random variable, which can be stated as∫∞

t
e−β udZ(u). But, if β = 0, then αk(t) = αk(0) + η Z(t) where t ≥ 0. This αk(t) process has

a positive increment when Z has positive increment. If µ is positive then the mean αk(t) is also
positive, otherwise the negative value of αwill give non-stationary behaviour. Hence, when p = 1
we have A(t) = α1(t) = α(t). The polynomial A(t) can be restated as

at(z) = zp + α1(t)zp−1 + · · ·+ αp(t),

bt(z) = b0(t) + b1(t)z + · · ·+ bq(t)z
q.

(17)

The generalized CARMA process with stochastic speed of mean reversion is stationary if and
only if the real parts of the eigenvalues for every time t, A(t) are negative, that is Re(λi)(t) < 0 for
i = 1, . . . , p, then the roots of the polynomials (17) are distinct.

3 Empirical Analysis of Temperatures Data

Weusedata of theKota Bharu,Malaysia daily average temperatures (DATs)which are recorded
in degrees of Celsius. The data from 1 January 1997 until 6 September 2016 are obtained from
MalaysianMeteorological Department. To synchronise the length of data in each year to 365 days,
we have removed records on 29 February in each leap year, leave us with number of 7095 observa-
tions. We have checked and found no missing data in the time series. Figure 1 illustrates the time
series of DATs for the last 5 years.
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Figure 1: Time series of DATs for Kota Bharu.

278



M. Darus and C. M. I. C. Taib Malaysian J. Math. Sci. 16(2): 273–288 (2022) 273 - 288

The descriptive statistics of DATs is presented in Table 1. We may clearly see the seasonal
pattern of DATs in Kota Bharu where temperatures vary in the range of (22.8, 40.9). We found
that the average of the temperature is 27.3, while the standard deviation is equal to 1.1. The value
of skewness equals −0.2449 which indicates the left skewness of temperature and kurtosis equals
3.306 almost likely to the normal distribution. The histogram plot of the temperature distribution
in Figure 2 however gives sign of deviation from normality.

Table 1: Descriptive statistics of DATs.

Min Max Mean Std Dev Skewness Kurtosis
22.8 40.9 27.3 1.1 -0.24491 3.306
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Figure 2: Histogram of DATs.

3.1 Trend and Seasonal Component

We use a seasonal function given as

Λ(t) = a0 + a1t+ a2 sin

(
2π (t− a3)

365

)
, (18)

where constant a0 is the average level of temperature and a1 is the slope of a linear trend function.
While the constants a2 and a3 shows the amplitude of the mean and the phase angle, respectively.

Figure 3 illustrates the DATs fitted with seasonal function (18) for the last 5 years. In Figure 4,
we plot the autocorrelation function of DATs which shows a clear seasonal effect in the plot.
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Figure 3: DATs of Kota Bharu together with fitted seasonal function.
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Figure 4: The autocorrelation function of DATs for Kota Bharu.

Table 2 reports parameters which are estimated from the least square fitting of seasonal func-
tion to the DATs data 1. The a1 = 0.00001 indicates that the trend of temperatures series is increas-
ing at a slow rate with a very small P-value of 0.0000. The seasonal variations are small by looking
at the amplitude a2 equals 0.9926.

Table 2: Estimates from seasonal function fitting.

a0 a1 a2 a3
27.3544 0.00001 0.9926 65.6056

1We use nlinfit function in Matlab for least square estimation procedure.
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The temperature are detrended and deseasonalized by subtracting the estimated Λ(t) from our
observed temperature T (t), that is

Y (t) = T (t)− Λ(t). (19)

Based on the partial autocorrelation (PACF)plot in Figure 5, it is suggested to useCARMA(3, 0)
or simply CAR(3) for the deseasonalized temperatures dynamics.
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Figure 5: The PACF of the detrended and deseasonalized DATs of Kota Bharu.

3.2 CAR(3) Model

We may represent the CAR(3) on a daily scale Y (tn) ≈ yn in discrete form as AR(3) given by

yn = β1yn−1 + β2yn−2 + β3yn−3 + εn,

where β1, β2 and β3 are constants and εn are i.i.d residuals. All the parameters are obtained from
fitting the deseasonalized DATs to AR(3) model which are reported in Table 3. Since our model
is in continuous time, we apply the following relation

3− α1 = β1,

2α1 − α2 − 3 = β2,

α2 + 1− (α1 + α3) = β3,

(20)

to obtain the estimates for CAR(3) (refer to Benth and Sǎltyte [6]) as in Table 4.
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Table 3: Regression parameters of AR(3).

β1 β2 β3
-0.6095 0.0115 -0.1176

Table 4: Fitted regression parameters of CAR(3).

α1 α2 α3

3.6095 4.2075 1.7156
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Figure 6: Plot of (top) histogram of residuals fitted with normal distribution and (bottom) density of residuals fitted with NIG.
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The eigenvalues of matrix A are λ1 = −1.8052 and λ2,3 = −0.9022 ± 0.3694i. Since all the
eigenvalues have negative real parts, then the stationary condition of the CAR(3) process holds.
By looking at Figure 6, it seems that histogram of residuals after removing the autoregressive
effect follows the normal distribution but the reported values of skewness equal−0.1737 and kur-
tosis equals 3.4139 reject the normality. The standard deviation of residuals is 1.5725. Hence, we
suggest to use the normal inverse Gaussian (NIG) distribution to model the residuals.

The NIG distributionwas introduced by Barndorff-Nielsen [3] in order tomodel the returns of
financial time series with four parameters: α, β, δ and µ. Its probability density function is defined
as

f(x;α, β, δ, µ) = kexp(β(x− µ))
K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
,

where α represents the heaviness of the tails, while β and δ are the skewness and scale parameters,
respectively. The parameter for the location of the distribution is represented by µ. Here, k =

δαexp(δ
√
α2 − β2)/π and K1(x) is the modified Bessel function of the third kind with index 1.

The density of residuals fitted with NIG are plotted in Figure 6 and the estimated parameters of
NIG are reported in Table 5.

Table 5: Estimated parameters of NIG distribution.

α β δ µ
1.9157 0.4537 3.1315 0.7604

4 Simulation of the Daily Average Temperatures

Our aim here is to simulate paths of DATs using CAR(3) with stochastic speed of mean rever-
sion model. From (19), temperature at time t ≥ 0 can be obtained by adding the seasonal mean
function to the CAR(3) process, that is T (t) = Λ(t) + Y (t). However, this is not straightforward
since Y (t) contains stochastic speed of mean reversion inside matrix A(t). Thus, in a step-by-step
procedure, we have to simulate the mean reversion rates using (13) and the αk(t) for k = 1, ..., 3
at each time t are used to form the matrix A. Then, we simulate X(t) for t = 1, ..., 365 in a usual
way.

We take our estimates in Table 4 as the initial values for the stochastic speed of mean reversion,
ak(0). We simulate a path of daily αk(t) for t = 1, ..., 365, which covers for one year period. To
have the NIG distributed returns, we let L = B, a Brownian motion. Then, the subordinator Z
follows the inverse Gaussian family, in which the process αk(t) becomes stationary. Eq. (16) can
be discretized and approximated via Euler scheme given as

αk(t+ 1) = µ
(
1− e−β

)
+ e−βα(t) + η e−β∆L(s), (21)

where L ∼ NIG(α, β, δ, µ). Note that the value of parameters β, µ and η must be positive. It is
hard to estimate such parameters since αk(t) are not observable. However, to our best (just for
illustration), we let β = 0.9, µ = 0.55 and η = 0.85, and p = 3 which look reasonable. We have
three different mean reversion rates inside matrix A(t): α1(t), α2(t) and α3(t). We also assume
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that the process Z(t) are independent of L(t). The simulated paths of α1(t), α2(t) and α3(t) are
plotted in Figure 7.
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Figure 7: Simulated paths of stochastic speed of mean reversion. Top left: α1(t). Top right: α2(t). Buttom: α3(t).

Next, we compute the eigenvalues of the matrixA(t) at each time t. We found that real parts of
eigenvalues of A(t) are negative, which indicate that the process CAR(3) process with stochastic
speed of mean reversion satisfied the stationary condition.

To simulate X(t), we discretize (10) with L = B in the form

X(t+ 1) = X(t)eA(t) + eA(t)epσ∆B(t). (22)

The simulation ofX(t) for t = 1, ..., 365 days started with X(0) = (0, 0, 0)′. From (2), we later ob-
tain Y (t). Figure 8 shows the simulated CAR(3) process with stochastic speed of mean reversion.
By adding Y to the seasonal mean values, we get the simulated DATs as in Figure 9.

284



M. Darus and C. M. I. C. Taib Malaysian J. Math. Sci. 16(2): 273–288 (2022) 273 - 288

50 100 150 200 250 300 350
Days

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 8: CAR(3) process with stochastic speed of mean reversion.

The simulated temperatures are for 365 days starting from 1 June 2016 until 31 May 2017. We
can see DATs moves downwards for the first half of the period, since Kota Bharu is entering mon-
soon season starting in November where the ambient temperature is low. For the second half of
the simulation period, the temperature is going upwards where the monsoon end and sunny sea-
son starts. The minimum and maximum temperatures for this simulation period is 25.4 and 29
respectively. We can see that the daily average temperature well simulated by using the CARMA
process with stochastic speed of mean reversion, Y (t).

5 Pricing of Temperature Index Insurance

Weprice the insurance contract based on our simulatedT (t) fromCAR(3) processwith stochas-
tic speed of mean reversion. Suppose that the contract is entered at any time t ≤ τ1 with the cov-
erage period [τ1, τ2]. The coverage period can be monthly, quarterly, semi-annually, or annually.
This insurance contract is based on the cumulative average temperature (CAT) index which are
measured as sum of DATs during the coverage period, given by

CAT(τ1, τ2) =

∫ τ2

τ1

T (t)dt.

The insured pays the premium at time t ≤ τ1 and will receive an amount of CAT(τ1, τ2) at time τ2.
To obtain the price of the insurance, we multiply the average of CAT(τ1, τ2) with the discounting
factor exp(−r(τ2 − t)), where r > 0 is the risk-free interest rate to get the present value,

P (t, τ1, τ2) = exp(−r(τ2 − t))E[CAT(τ1, τ2)|Ft].

Suppose we have the temperature insurance with coverage period starting from 1 June 2016
until 30 June 2016. Let the contract is engaged inMay 2016. We start the simulation of DATs from 1
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May 2016 until 30 June 2016 for 1000 times. Then, we compute the CAT index for each simulation
and discount their average to get the present value. The same procedures are repeated for 2 May
2016, the next day until 31 May 2016. We set the discounting rate r equals 0.00014 corresponds to
5% annual interest rate. Figure 9 presents the movement of the price P for the contract in June.
The lowest price is RM844.53 at 6 May 2016 and the highest price quoted on 25 May 2016 about
RM856.08.
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Figure 9: Time series of (top) simulation of DATs for 1 year and (bottom) the movement of the price P for contract in June.

6 Conclusion

We have proposed the CARMA processes with stochastic speed of mean reversion where we
allow the mean reversion rates in matrix A to behave stochastically. Their dynamics are explained
using the stochastic process of OU type. With the new representation of the stochastic differential

286



M. Darus and C. M. I. C. Taib Malaysian J. Math. Sci. 16(2): 273–288 (2022) 273 - 288

equation for the CARMA processes and the integrability of matrix A, we obtained the explicit
solution from Ito formula. We also provided the solution for the differential equation of the speed
of mean reversion and found that by restricting the driving factor of the OU process for the mean
reversion rates dynamics to be subordinator, the stationary property of the process holds.

Our analysis on the Kota Bharu, Malaysia temperatures data has revealed that the CARmodel
of order 3 is appropriate in explaining the temperature evolution. However, the assumption on
normally distributed residuals has been rejected due to the mass concentration of residuals at
the center of the distribution and heavy tails. We have fitted the residuals with NIG distribution
which looks fit very well. Hence, we assume that the increments of the CAR(3) process are NIG
distributed.

We have simulated the temperature dynamics based on the CAR(3) model with NIG dis-
tributed errors. In order to simulate the temperature, we first simulate the stochastic speed of
mean reversions for certain time period. We have appealed the OU process for the mean rever-
sion rate which later being used for simulating the CAR(3) process. Finally, we simulate the tem-
perature afterwards. From the simulated temperature, we price the temperature index insurance
which is computed using the CAT index. Since the index is based on the cumulative temperatures,
the price of the insurance looks expensive. From the policyholder perspectives, such price may
not be so attractive, but it is reasonable from the insurance companies point of view since they
have all the informations to cover their temperature risk.

We may extend the study by considering a stochastic process for volatility dynamics together
with the stochastic speed of mean reversion in the OU process. The stochastic volatility is jus-
tifiable with regards to the volatility clustering and fat tails in the residual distribution of many
stationary time series. But, it is a delicate task to ensure that stationary property of the OU pro-
cess still hold when both parameters are considered as stochastic. It is also a challenge to provide
analytical solution of a new stochastic differential equation for such process. These questions are
left for future research.
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